Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth.
نویسندگان
چکیده
Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing β-actin mRNA 3'UTR competes with endogenous β-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localization in adult sensory neurons (Donnelly et al., 2011). Here, we show that the 3'UTR of GAP-43 mRNA can deplete axons of endogenous β-actin mRNA. We took advantage of this 3'UTR competition to address the functions of axonally synthesized β-actin and GAP-43 proteins. In cultured rat neurons, increasing axonal synthesis of β-actin protein while decreasing axonal synthesis of GAP-43 protein resulted in short highly branched axons. Decreasing axonal synthesis of β-actin protein while increasing axonal synthesis of GAP-43 protein resulted in long axons with few branches. siRNA-mediated depletion of overall GAP-43 mRNA from dorsal root ganglia (DRGs) decreased the length of axons, while overall depletion of β-actin mRNA from DRGs decreased the number of axon branches. These deficits in axon growth could be rescued by transfecting with siRNA-resistant constructs encoding β-actin or GAP-43 proteins, but only if the mRNAs were targeted for axonal transport. Finally, in ovo electroporation of axonally targeted GAP-43 mRNA increased length and axonally targeted β-actin mRNA increased branching of sensory axons growing into the chick spinal cord. These studies indicate that axonal translation of β-actin mRNA supports axon branching and axonal translation of GAP-43 mRNA supports elongating growth.
منابع مشابه
Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity.
Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs a...
متن کاملmRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth.
UNLABELLED Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity fo...
متن کاملDifferential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons.
Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here, we used axons purified from cultures of injury-conditioned adult dorsal root ganglion (DRG) neurons and proteomics methodolo...
متن کاملBiosynthesis and intra-axonal transport of proteins during neuronal regeneration.
Intraocular injections of radiolabeled amino acids permitted the study of protein biosynthesis in goldfish retinal ganglion cells and the distribution of this material to the synapse via intra-axonal transport, during regeneration of the fish visual system. There is a 3-fold increase in amino acid incorporated within the ganglion cell layer compared to intact contralateral controls by 10 days a...
متن کاملNeural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons
The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2013